

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 691 (2006) 1295-1297

www.elsevier.com/locate/jorganchem

Partial incorporation of a cyclopentadienyl ligand into a molybdaborane to form a molybdacarbaborane

Note

Malcolm L.H. Green^a, John B. Leach^b, Malcolm A. Kelland^{c,*}

^a Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK

^b Department of Chemistry, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK

^c Department of Science and Technology, University of Stavanger, Kristine Bonnevies vei 1, P.O. Box 8002, N-4036 Stavanger, Norway

Received 4 October 2005; received in revised form 10 November 2005; accepted 16 November 2005 Available online 20 December 2005

Abstract

Reaction of the molybdaborane *arachno*-2-[Mo(η -C₅H₅)(η^5 : η^1 -C₅H₄)B₄H₇] (I) with NEt₃ in toluene at 120 °C for 7 days gives a 90% yield of the molybdacarbaborane *nido*-1-[Mo(η -C₅H₅)(η^3 : η^2 -C₃H₃)C₂B₃H₅] (II). Two of the carbon atoms in the substituted cyclopentadienyl ring in I are incorporated into the metallacarbaborane cluster II. The carbaborane {C₂B₃H₅} fragment in II is attached to an allylic {C₃H₃} group and can be thought of as a new non-planar {C₅B₃H₈} ligand providing seven electrons to the molybdenum atom. Reaction of I with KH in thf at 20 °C gives the anion [*nido*-1-Mo(η -C₅H₅)(η^3 : η^2 -C₃H₃)C₂B₃H₄⁻] (III) via deprotonation of a B–H–B bridging proton.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Boron hydrides; Metallaboranes; Metallacarboranes; Borane clusters; Molybdenum; NMR spectroscopy

The reaction of Lewis bases such as amines and phosphines with polyhedral borane clusters has been widely studied for many decades. Symmetrical [1,2] or unsymmetrical cleavage [3] of the borane cluster can occur to give simple Lewis acid-base adducts or ionic salts, respectively. Alternatively, polyhedral boranes can react with Lewis bases to form borane adducts with displacement of molecular hydrogen, without cleavage of the cluster framework [4,5]. In contrast to polyhedral boranes, relatively little work has been carried out on the reaction of Lewis bases with metallaboranes [6-10]. Macías and co-workers report that the reaction of the iridaborane arachno-1-[Ir(n- $C_5Me_5(H)B_4H_9$ with a range of phosphines and amines (excess) leads to $\{BH_3\}$ or $\{2H\}$ abstraction and the formation of the metallaboranes arachno-1-Ir(η -C₅Me₅)(H)- $(L)B_{3}H_{7}$ and *nido*-1-[Ir(η -C₅Me₅)(H)B₄H₇], respectively (L = Lewis base). In addition, reaction of arachno-1- $[Ir(\eta-C_5Me_5)(H)_2B_3H_7]$ with phosphines and amines leads to formation of 1-[Ir(η -C₅Me₅)(H)₂B₂H₄(L)] [11,12]. Shimoi, Kawano and co-workers have reported the reaction of *nido*-[Ru₂(η -C₅Me₅)₂(μ -H)₂(B₃H₇)] with tertiary phosphines to give [Ru₂(η -C₅Me₅)₂(μ -H)(\parallel - μ - η ⁴-B₂H₅)(PR₃)] (PR₃ = PMe₃,PMe₂Ph) via loss of {BH₃} from the cluster [13].

We have been interested in exploring the formation and chemistry of metallaboranes of the early to middle transition metals [14–18]. In particular, we have been able to synthesise the molybdaborane *arachno*-2-[Mo(η -C₅H₅)(η ⁵: η ¹-C₅H₄)B₄H₇] (**I**) in gram quantities and this has permitted a study of its chemistry [19]. Here we report the novel reaction of **I** with the tertiary amine NEt₃.

Reaction of I with NEt₃ in toluene at 120 °C for 7 days gives a 90% yield of the molybdacarbaborane *nido*-1- $[Mo(\eta-C_5H_5)(\eta^3:\eta^2-C_3H_3)C_2B_3H_5]$ (II) (Scheme 1). Compound II is also formed in high yield from the reaction of I with the metal hydrides [W(PMe_3)_4H_4], [W(PMe_3)_4H_2Cl_2], [Ta(\eta-C_5H_5)_2H_3] and [Ru(\eta-C_5H_5)(PMe_3)H_3] at elevated temperature in toluene with concomitant formation of the respective metal borohydrides. Treatment of I with excess

^{*} Corresponding author. Tel.: +47 51831823; fax: +47 51831750. *E-mail address:* malcolm.kelland@tn.uis.no (M.A. Kelland).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2005.11.040

Scheme 1. Formation of *nido*-1- $[Mo(\eta-C_5H_5)(\eta^3:\eta^2-C_3H_3)C_2B_3H_5]$ (II) from *arachno*-2- $[Mo(\eta-C_5H_5)(\eta^5:\eta^1-C_5H_4)B_4H_7]$ (I).

NMe₃ in toluene at room temperature gave an immediate reaction with formation of $[Mo(\eta-C_5H_5)_2H_2]$ and $[BH_3 \cdot NMe_3]$, as observed by ¹H and ¹¹B NMR spectroscopy. Treatment of I with trialkylphosphines does not give II but instead metallaborane phosphine adducts [20].

Compound II has been characterised by ¹H, ¹¹B and ³¹P NMR spectroscopy and elemental analysis.¹ The line-narrowed ¹¹B NMR spectrum of **II** consists of two resonances, a doublet of triplets ($\delta = 18.2$ ppm) and a doublet of doublets ($\delta = 4.1 \text{ ppm}$) in an integral ratio of 1:2. The ¹H NMR spectrum of II comprises a singlet ($\delta = 4.30$ ppm, 5H) assigned to the η -C₅H₅ ligand, and a doublet of doublets ($\delta = 5.01$ ppm, 2H) and a triplet ($\delta = 4.44$ ppm, 1H) assigned to the bridging exo-cage C₃H₃ fragment. In the ¹H{¹¹B} NMR spectrum of **II** there is also a doublet of doublets ($\delta = -2.59$ ppm, 2H) assigned to the two equivalent B-H-B bridging hydrogen atoms, a multiplet $(\delta = 3.70 \text{ ppm}, 3\text{H})$ assigned to the terminal B–H hydrogen atoms. Selective ¹H{¹¹B} NMR experiments showed that the equivalent terminal B-H protons and the unique terminal B-H proton resonate at slightly different frequencies. Decoupling the unique B atom gave a triplet ($\delta =$ 3.74 ppm) whilst decoupling the two equivalent B atoms gave a doublet ($\delta = 3.70$ ppm). The ¹³C NMR spectrum consists of a doublet ($\delta = -2.29$ ppm) assigned to the η - C_5H_5 ligand, and a doublet ($\delta = 5.31$ ppm) and doublet $(\delta = 13.84 \text{ ppm})$ assigned to the allylic *exo*-cage C atoms. The quaternary C atoms were not observed probably because of considerable broadening due to coupling to the equivalent B atoms.

It appears that the Lewis base NEt₃ has removed a $\{BH_3\}$ unit from the borane cluster of I to form a metallacarbaborane in which two of the C atoms originally from the $\eta^5:\eta^1-C_5H_4$ ligand have been incorporated into the cage. The C₂(C₃H₃)B₃H₅ carbaborane ligand in **II** carries an *exo*-cage allylic group. The C₂(C₃H₃)B₃H₅ carbaborane and allylic groups can be thought of as a non-planar {C₅B₃H₈} ligand providing seven electrons to the molybdenum atom. Although the proposed structure for **II** is novel it shows close similarities to the previously reported *closo*-1-[Mo(η -C₅H₅)(η^2 : η^3 -C₃H₃)C₂B₉H₉], which has been crystallographically characterised [19]. The molybdenum–carbon–boron skeleton of **II** is exactly the same as in *closo*-1-[Mo(η -C₅H₅)(η^2 : η^3 -C₃H₃)C₂B₉H₉] if the boron atoms not directly bonded to the molybdenum atom are removed.

Pipal et al. reported the formation of the metallacarbaborane *closo*-1,7-[Co₂(η -C₅H₅)C₂(C₃H₄)B₃H₃] from NaB₅H₈, NaC₅H₅ and CoCl₂ at low temperatures in thf [21]. This metallacarbaborane cluster is a triple decker sandwich compound with a planar "C₂B₃H₃" ligand bonded to an *exo*-cage bridging propylenyl group. The metallacarbaborane is formed via partial incorporation of a cyclopentadienyl group into the cluster. However, in contrast to the allylic {C₃H₃} fragment in **II**, the propylenyl {C₃H₄} bridging group is not interacting with the metal atoms.

Insertion of a cyclopentadienyl ligand into a metallaborane framework containing a group 6 metal has been reported previously for the formation of the 24-electron triple-decker sandwich complex $[{(\eta^5-C_5H_5)Cr}_2{\mu-\eta^6-\eta^6-(\mu-1,2-C_2B_4H_4)}]$ in low yield. The complex contains a metal-stabilised planar tetraborabenzene ligand [22].

Compound II is closely related to a large number of "*nido*-1-MC₂B₃" clusters that contain a planar "C₂B₃" ligand bonded to a metal centre. Examples include *nido*-[Fe(η -C₆Me₆)C₂B₃H₇] prepared by degradation of the 7-vertex cluster *closo*-[Fe(η -C₆Me₆)C₂B₄H₈] via loss of the apical {BH} fragment [23], *nido*-1-[Co(η -C₅H₅)C₂Me₂B₃H₅] prepared similarly or from reaction of *nido*-2-[Co(η -C₅H₅)B₄H₈] with but-2-yne [24], and [Fe(CO)₃C₂B₃H₇] formed by the reaction of [Fe(CO)₅] with *closo*-[C₂B₄H₈] [25]. There are also numerous *closo* clusters containing the planar ligand [26].

The NMR spectra of other "*nido*-1-MC₂B₃" metallacarbaboranes show similar shielding patterns to those observed for **II**. In the ¹¹B NMR spectrum of compound *nido*-1-Co(η -C₅H₅)C₂Me₂B₃H₅ the boron resonances appear close together at $\delta = -2.7$ ppm (2B) and -2.0 ppm (1B). This compares with $\delta = 18.2$ ppm (1B) and 4.1 ppm (2B) for **II**. In the ¹H NMR of the cobalt cluster the B–H terminal and B–H–B bridging hydrogen atoms appear at

¹ Analytical data for compound **II**. Found: C, 46.1; H, 5.1%. C₁₀H₁₃B₃Mo Calc.: C, 45.9; H, 4.9. Selected NMR data: Compound **II**, solvent benzene-*d*₆; Compound **III**, solvent thf-*d*₈. ¹H NMR at 300 MHz, ¹³C NMR at 75.5 MHz and ¹¹B NMR at 96.25 MHz. Compound **II**: ¹¹B [*J*(¹¹B-¹H)] δ 18.2 (d of t, [*J*(B-H) 147], [*J*(B-H-B) 36], 1B, B₅), 4.1 (d of d, *J*(B-H) 150], [*J*(B-H-B) 38], 2B, B_{4,6}); ¹³C{¹¹H} [*J*(¹³C-¹H)] δ 98.02 (d, (168) 1C, C₅), 89.45 (d, (181, 2C, C_{4,6}), 81.91 (d, (180), 5C, C₅H₅), C₂ and C₃ were not observed; ¹¹H{¹¹B} δ 5.03 (d of d, 2H, H_{24,26}), 4.44 (t, 1H, H₂₅), 4.36 (s, 5H, C₅H₅), 3.70 (br m, 3H, H_{4,5,6}), -2.60 (d of d, 2H, H_{45,56}). Compound **II**: ¹¹B δ 11.9 (br s, 2B, B_{4,6}), 13.4 (br s, 1B, B₅); ¹¹H{¹¹B} δ 4.86 (br d, 2H, H_{24,26}), 4.44 (br t, 1H, H₂₅), 4.35 (s, 5H, C₅H₅), 2.33 (br s, 3H, H_{45,56}), -5.64 (s, 1H, H₄₅ or H₅₆).

 $\delta = 6.37$ ppm (3H) and -3.05 ppm (2H), respectively. In compound II they appear at $\delta = 3.70$ ppm (3H) and -2.60 ppm, respectively. Other "*nido*-1-MC₂B₃" clusters also show similar chemical shifts for the three B–H terminal hydrogen atoms.

We tried to investigate some chemistry of II. Treatment of a solution of II in thf with KH gave [nido-1-Mo- $(\eta - C_5 H_5)(\eta^3 : \eta^2 - C_3 H_3)C_2 B_3 H_4^{-1}[K^+]$ (III). The ¹H{¹¹B} NMR spectrum of III showed that one of the B-H-B bridging hydrogen atoms had been lost. The remaining bridging hydrogen atom appears at much higher field ($\delta =$ -5.64 ppm) than the bridging hydrogens in the non-ionic compound II. The hydrogens associated with the $[C_3H_3]$ allylic fragment in III appear in a 2:1 ratio as in the undeprotonated II. This can be explained if the lone B-H-B bridging hydrogen atom is rapidly exchanging between the two bridging sites. A similar fluxional process has been shown to occur in *nido*- $[Me_2C_2B_4H_5]$ and several *nido*- $[MC_2B_4H_4]$ metallaborane anions (M = two electron-donating metal fragment) [26–28]. The terminal B-H hydrogen atoms appear as a broad singlet at $\delta = 2.33$ ppm. The ¹¹B NMR spectrum shows two broad resonances at close chemical shifts, $\delta = 11.9 \,(2B)$ and $\delta = 13.4 \,\text{ppm} \,(1B)$.

Refluxing compound II with various alkynes gave no reaction. Although small tetracarbon metallacarbaboranes are known there is no precedent for *nido*-1-MC₂B₃ clusters to cage expand [29,30]. Treatment of II with PMe₃ or PEt₃ gave no reaction at 20 °C and only cage degradation and formation of [Mo(η -C₅H₅)₂H₂] occurred at higher temperatures. Thus, although II has an unusual structure it behaves in a similar manner to other *nido*-1-MC₂B₃ clusters.

1. Preparation of II

A solution of I (0.20 g, 0.72 mmol) and NEt₃ (0.5 ml, 5 mmol) in toluene (10 ml) was heated in a sealed Young's ampoule at 120 °C for 1 week. By then the orange-red solution had lightened to a brown-orange colour. Volatiles were removed in vacuo, pumping for at least 1 h to remove the NEt₃. The residue was extracted with pentane $(3 \times 10 \text{ ml})$, filtered and concentrated to 15 ml. Cooling to -78 °C for 3 days gave orange crystals of II which were filtered off, washed with cold pentane and pumped dry. Yield 0.17 g, 90%.

2. Preparation of III

An orange solution of II (10 mg) in thf- d_8 was treated with excess KH. Effervescence occurred and the solution turned red. The solution was filtered and transferred to a 5-mm NMR tube and sealed under vacuum. Nmr spectroscopic analysis showed it to be pure **III**.

References

- S.G. Shore, in: E.L. Muetterties (Ed.), Boron Hydride Chemistry, Academic Press, New York, 1975, p. 79.
- [2] R.W. Parry, L.J. Edwards, J. Am. Chem. Soc. 81 (1959) 3554.
- [3] W.V. Hough, L.J. Edwards, Adv. Chem. Ser. (32) (1961) 184.
- [4] G.L. Brennan, R.J. Schaeffer, Inorg. Nucl. Chem. 20 (1961) 205.
- [5] R.J. Schaeffer, J. Am. Chem. Soc. 79 (1957) 1006.
- [6] X. Lei, M. Shang, T.P. Fehlner, Organometallics 19 (2000) 5266.
- [7] L. Barton, J. Bould, H. Fang, K. Hupp, N.P. Rath, C. Gloeckner, J. Am. Chem. Soc. 119 (1997) 631.
- [8] P. McQuade, R.E.K. Winter, L. Barton, J. Organomet. Chem. 688 (2003) 82.
- [9] L. Barton, O. Volkov, M. Hata, P. McQaude, N.P. Rath, Pure Appl. Chem. 75 (9) (2003) 1165.
- [10] P. McQuade, K. Hupp, J. Bould, H. Fang, N.P. Rath, R.Ll. Thomas, L. Barton, Inorg. Chem. 38 (1999) 5415.
- [11] R. Macias, T.P. Fehlner, A. Beatty, Angew. Chem. Int. Ed. 41 (2002) 3860.
- [12] R. Macias, T.P. Fehlner, A. Beatty, Organometallics 23 (2004) 2124.
- [13] L.N. Pangan, Y. Kawano, M. Shimoi, Organometallics 19 (2000) 5575.
- [14] P.D. Grebenik, M.L.H. Green, M.A. Kelland, J.B. Leach, P. Mountford, G. Stringer, N.M. Walker, L.L. Wong, J. Chem. Soc., Chem. Commun. (1988) 799.
- [15] P.D. Grebenik, M.L.H. Green, M.A. Kelland, J.B. Leach, P. Mountford, J. Chem. Soc., Chem. Commun. (1990) 1234.
- [16] P.D. Grebenik, M.L.H. Green, M.A. Kelland, J.B. Leach, P. Mountford, New J. Chem. 16 (1992) 19.
- [17] H.J. Bullick, P.D. Grebenik, M.L.H. Green, A.K. Hughes, J.B. Leach, P. Mountford, J. Chem. Soc., Dalton Trans. (1994) 3337.
- [18] H.J. Bullick, P.D. Grebenik, M.L.H. Green, A.K. Hughes, J.B. Leach, P.C. McGowan, J. Chem. Soc., Dalton Trans. (1995) 67.
- [19] P.D. Grebenik, M.L.H. Green, M.A. Kelland, J.B. Leach, P. Mountford, J. Chem. Soc., Chem. Commun. (1989) 1397.
- [20] M.A. Kelland, D.Phil Thesis, Oxford University, 1993.
- [21] J.R. Pipal, R.N. Grimes, Inorg. Chem. 17 (1978) 10.
- [22] K. Kawamura, M. Shang, O. Wiest, T.P. Fehlner, Inorg. Chem. 37 (1998) 608.
- [23] R.G. Swisher, E. Sinn, R.N. Grimes, Organometallics 4 (1985) 890
- [24] V.R. Miller, R.N. Grimes, J. Am. Chem. Soc. 95 (1973) 1109.
- [25] L.G. Sneddon, D.C. Beer, R.N. Grimes, J. Am. Chem. Soc. 95 (1973) 6623.
- [26] R.N. Grimes, in: G. Wilkinson, F.G.A. Stone, E. Abel (Eds.), Comprehensive Organometallic Chemistry, Part 1, Pergamon Oxford, 1982, pp. 459–542 (Chapter 5.5).
- [27] N.S. Hosmane, P. De Meester, U. Siriwardene, M. Safiqul Islam, S.S.C. Chu, J. Chem. Soc., Chem. Commun. (1986) 1421.
- [28] D.C. Finster, R.N. Grimes, Inorg. Chem. 20 (1981) 863.
- [29] T.P. Fehlner, J. Am. Chem. Soc. 102 (1980) 3424.
- [30] R.P. Micciche, L.G. Sneddon, Organometallics 3 (1984) 1396.